
COMP2350 - Algorithms Fall 2023

Assignment 2
Due: Oct 5, 2023 at 11:59PM

1 Assignment 2 Specification

1.1 Implementation

The skeleton code at https://classroom.github.com/a/Q2gAR5Sv is the start of a program to add floating
point numbers in a way that reduces rounding error. Since floats take up a fixed amount of memory, adding
two floats with very different magnitudes can lead to an approximate rather than exact solution – some or
all of the smaller value is rounded off. This means that adding many floats together can lead to different
amounts of rounding error depending on the order they are added together. To minimize rounding error, see
the algorithm below.

Complete the program by implementing a faster version of min2Scan that implements a heap for its
insert/extract operations. To complete the assignment, replace the TODO method stub with the below
algorithm. You can (and should) write private helper methods in the A2 class that are called by heapAdd.
All inputs will be non-negative.

The skeleton code has three sample algorithms:

seqAdd Performs a simple sequential sum of the numbers in the order in which they were given. This can
generate a lot of rounding error.

sortAdd Sorts the input from smallest to largest and then sums them sequentially. This generates less
rounding error than seqAdd, but doesn’t minimize it.

min2Scan Scans the set of input numbers for the smallest two numbers, adds them, and puts the result
back in the set. Repeats this until all the numbers are summed. This minimizes rounding error.

Your algorithm, heapAdd, should use a heap to implement the technique that min2Scan uses:

heapAdd(A)

1: build heap from A
2: while heap.size > 1 do
3: extract min from heap
4: extract min from heap
5: sum two mins
6: insert sum into heap

7: return heap[0]

Using a heap will speed up the extract and insert operations while still minimizing rounding error.

When you change the size of the heap, consider using a separate variable to keep track of its current size,
rather than relying on the array’s size. Do not resize or copy the array for each insert and delete operation
– that takes too many operations. Also, do not use any of Java’s built-in Collections (e.g. PriorityQueue,
ArrayList) in this assignment.

1.2 Testing

Full JUnit tests are provided in the edu.wit.cs.comp2350.tests package. You can run these tests to see if
your code is performing correctly for some samples. Your assignment grade will be based entirely on these
tests. In future assignments I will not provide all of the grading tests so you will have to be thoughtful with
testing your code.

The value that heapAdd calculates should match the tests exactly. An answer that looks close means that
you’ve added all the values but not in the correct order. If tests are timing out, that means that you have

1 of 2

https://classroom.github.com/a/Q2gAR5Sv


COMP2350 - Algorithms
Fall 2023

Assignment 2
Due: Oct 5, 2023 at 11:59PM

a lot of extra operations that are slowing down your algorithm – most likely from unnecessary memory
allocation.

A ChartMaker class is also included, which will create a chart of the runtimes of each algorithm with
different input sizes. You can use this chart to verify that the time complexities of the algorithms are
what you expect. Additionally, an ErrorChartMaker class in included, which creates a chart showing the
roundoff error of each adding algorithm.

2 Grading

testSmall: 65% with heap operations implemented

Other tests: 35%

2 of 2


	Assignment 2 Specification
	Implementation
	Testing

	Grading

