COMP2350 - Algorithms Fall 2023

Assignment 3
Due: Oct 12, 2023 at 11:59PM

1 Assignment 3 Specification
1.1 Goals

1. Practice converting pseudocode to Java

2. Implement and test two sorting algorithms

1.2 Implementation

The skeleton code at https://classroom.github.com/a/Jz3Li82v is the start of a program to sort lati-
tude/longitude coordinates based on distance from a starting point. An additional class, Coord, is included
in the code. It holds information about the coordinate, including the value that you should sort by: the
distance field. The distances are already calculated in the Coord array by the time a sorting algorithm is
called. You can access those distances with the getDist method.

In order to sort the input array, change its order in-place. Instead of an explicit return value, the updated
order of input array should be the result of the sorting method calls.

There are two provided algorithms:
insertionSort Uses an O(n?) sorting algorithm to sort the array.
systemSort Calls Java’s built-in sorting algorithm, which is a variant on mergesort.

For this assignment, you will implement two sorting algorithms: quickSort and randQuickSort. You should
implement quicksort as it is presented in the lecture slides or book: when partitioning, pick the left or right
element in each subarray as the pivot. For randomized quicksort, use the Java Random class to generate
a valid index in the subarray for each partition call and use that value as the randomly chosen pivot. Look
up Java’s documentation to figure out how to use Random and adapt its behavior to the index ranges you
want. You can write additional private methods in A3.java to help with your solution. Do not edit anything
in the Coord.java file.

1.3 Testing

For this assignment, full JUnit tests are provided in the edu.wit.cs.comp2350.tests package. You can run
these tests to see if your code is performing correctly. Your assignment grade will be based entirely on these
tests. In future assignments I will not provide all of the grading tests so you will have to be thoughtful with
testing your code. If tests are timing out, that means that you have a lot of extra operations that are slowing
down your algorithm — most likely from extra memory allocation. If you get a StackOverflowError for any
of the tests, that means that you are allocating an excessive amount of memory in each quicksort call.

A ChartMaker class is also included, which will create a chart of the runtimes of each algorithm with
different input sizes. You can use this chart to verify that the time complexities of the algorithms are what
you expect. Your randomized quicksort should be competetive with the system’s sorting speed!

2 Grading
Quicksort: 70%
Randomized quicksort: 30%

1of


https://classroom.github.com/a/Jz3Li82v

	Assignment 3 Specification
	Goals
	Implementation
	Testing

	Grading

