
COMP2350 - Algorithms Fall 2023

Assignment 8
Due: Dec 3 at 11:59PM

1 Assignment 8 Specification

1.1 Implementation

The skeleton code at https://classroom.github.com/a/KmQKV3HS is the start of a program to solve the
0-1 knapsack problem (p425 in CLRS, and lecture notes): Given n objects, each with integer weight wi

and price pi, and a knapsack that can hold up to weight W , select the most valuable subset of objects that
don’t exceed the knapsack’s capacity. All weights and prices will be positive integers. Implement a dynamic
programming solution to the problem.

For this assignment, you will implement the FindDynamic method (and any helper methods you want)
in A8.java. In addition to returning an array with the included items, you should also update the class
variable best price with the optimal price in a solution. Since the order of the items doesn’t matter, you
can return them in any order.

There are two algorithms already implemented:

findEnumerate Tests every possible subset for the weight limit and price of the knapsack.

findGreedy Greedily picks the best remaining item based on its price:weight ratio, which is sometimes
suboptimal.

The item files are supplied in the objects directory. They are text files with a ⟨weight, price⟩ pair to
describe an item on each line.

1.2 Testing

For this assignment, JUnit tests are provided in the edu.wit.cs.comp2350.tests package. The tests check
if the knapsack has the optimal price and satisfies the weight limit. For grading this assignment, I will use
some different item lists in addition to the ones supplied. Write some of your own tests to test corner cases
and make sure your code is robust.

A ChartMaker class is included, which will create a chart of runtimes comparing dynamic, enumerative,
and greedy algorithms. You can use this chart to verify that your dynamic programming solution runtime
is what you expect.

2 Grading

best price: 70%

Items array: 30%

1 of 1

https://classroom.github.com/a/KmQKV3HS

	Assignment 8 Specification
	Implementation
	Testing

	Grading

