Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

Name: ____

1. (10 points) Warm Up

For each of the functions given below, indicate the tightest upper-bound possible.

- (a) $f(n) = \frac{1}{n^2}$?
- (b) $f(n) = (5n)^2 100 + 5.34?$
- (c) $f(n) = n^3$?
- (d) Is $(\frac{n}{2})^n = O(2^n)$?
- (e) What is the worst-case time complexity of accessing the ith element in a linked list of n elements?
- (f) What is the worst-case time complexity of accessing the ith element in an array of n elements?
- (g) Give a precise definition of $f = \Theta(g)$.

2. (15 points) Heaps

Give an O(1) algorithm for finding the third-smallest element in a balanced unique minheap. Give your answer using pseudocode or clear English with a diagram. Prove your running time bound.

3. (20 points) Trees

Prove that red-black trees are approximately balanced. (Hint: use the tree's properties to determine how different leaf depths are from each other.)

4. (10 points) **Quicksort**

What is the running time of QUICKSORT when all elements of the input array have the same value?

5. (10 points) Trees

The pseudocode to find the number of nodes in a tree is as follows:

Algorithm 1 $SIZE(x)$
1: if $x = nil$ then
2: return 0
3: return $1 + SIZE(x.left) + SIZE(x.right)$

What is the worst-case runtime for a call to SIZE(root) in a tree with n nodes? What is the best-case runtime?