
COMP2350 - Algorithms Fall 2022

Invariant Proofs

1 Invariant Proofs

1.1 Purpose

This handout introduces a proof structure from mathematics – proof by induction – and then shows the
adaptation to computer science. The result is an invariant proof, which proves that an algorithm produces
correct results in a general case.

2 Proof By Induction

This form of proof can prove a property, but it cannot derive the property in the first place.

2.1 Definition

A proof by induction (or inductive proof) is used to prove properties in discrete domains. There are two
parts to each proof: the base case, and the inductive case.

To start with, a property is expressed for a certain count, n.

To prove a base case, a small value (0, or 1 perhaps) is plugged into n and the property is proven for that
specific value.

To prove an inductive case, the property is assumed to be true at an arbitrary value k, and then proven to
be true for k + 1.

2.2 Examples

2.2.1 Triangular numbers

Property to prove: 1 + 2 + · · ·+ n = n(n+1)
2

Base case: When n = 1, the property claims 1 = 1(1+1)
2 . 1 = 1 is true.

Inductive case:

Assume property is true when n = k: 1 + 2 + · · ·+ k = k(k+1)
2

Show property is true when n = k + 1. Plug in k + 1 for n on the left side of the equation, and apply
assumptions/algebra:

1 + 2 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

=
(k + 1)((k + 1) + 1)

2

We have shown that 1 + 2 + · · ·+ k + (k + 1) = (k+1)((k+1)+1)
2 .

Therefore, we have proven that 1 + 2 + · · ·+ n = n(n+1)
2 is true for n ≥ 1 by induction.

2.2.2 Sum of Squares

Property to prove:

1 of 4



COMP2350 - Algorithms
Fall 2022

Invariant Proofs

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

Base case: When n = 1, the property is easy to prove with simple arithmetic:

1∑
i=1

i2 =
1(1 + 1)(2× 1 + 1)

6

12 =
6

6

Inductive case:

Assume property is true when n = k:

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6

Show property is true when n = k + 1. Plug in k + 1 for n on the left side of the equation, and apply the
assumption, followed by algebraic acrobatics:

k+1∑
i=1

i2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
2k3 + k2 + 2k2 + k

6
+

k2 + 2k + 1

6

=
2k3 + 9k2 + 13k + 6

6

=
(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6

We have shown that

k+1∑
i=1

i2 =
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6

Therefore, we have proven that
∑n

i=1 i
2 = n(n+1)(2n+1)

6 is true for n ≥ 1 by induction.

2 of 4



COMP2350 - Algorithms
Fall 2022

Invariant Proofs

3 Invariant Proofs

Invariant proofs are useful tools that can prove that algorithms work correctly, independent of input order
or size. They adopt much of their logical proof structure from inductive proofs, especially the focus on a
base and inductive case.

3.1 Definition

A property is expressed that remains true over the full run of an algorithm.

This property is supported with three sections:

• The initialization section proves that the property is true at the beginning of algorithm’s run.

• The maintenance section assumes that the property is true after an arbitrary time in the algorithm’s
run (corresponding to some number of times through a loop or recursive calls), and the property is
proven to remain true after the algorithm executes another loop/recursive call.

• The termination section proves that the algorithm terminates, and combines the invariant property
with the termination condition to prove a more general property about the algorithm’s correctness.

3.2 Purpose

Invariant proofs are presented to prove that an algorithm works correctly. Invariant properties are rarely the
property that we want to prove. Instead, a proven invariant property combined with a termination condition
can prove that an algorithm’s result is correct.

3.3 Examples

3.3.1 Radix Sort

Property to prove: The radix sort algorithm sorts any input.

Assumptions: Input values are non-negative integers and Stable Digit Sort works correctly.

Invariant property: After sorting i columns (starting on the right), our values are sorted if we truncate
them to i digits.

Initialization: When the algorithm starts, i is 0, and truncating values to digits give us 0s for each value.
A list of 0s is sorted so our property holds to start with.

Maintenance: Assume that k columns have already been sorted, so the first k digits of all values are in
sorted order. Show that, after running a Stable Digit Sort on column k+ 1, the first k+ 1 digits are sorted.

Running Stable Digit Sort guarantees that column k + 1 is sorted. We can guarantee that columns 1 . . . k
stay sorted because the Digit Sort is stable. If there is a tie between two values in column k + 1, columns
1 . . . k are sorted to start with and the values in 1 . . . k do not swap to an incorrect ordering. Therefore
columns 1 . . . k + 1 are now sorted.

Termination: The loop in radix sort runs through all d columns, so all columns are sorted. Therefore the
full non-truncated input values are now in sorted order.

Like the inductive step in induction proofs, the maintenance step is the critical step to prove that an
algorithm behaves correctly with any input size. The invariant property in this proof follows a frequent
pattern of invariant properties: it proves something is true for the data we have processed so far. That
ensures that the property can stay true during the entire run of the algorithm, regardless of input size.

3.3.2 Partition

Property to prove: The partition algorithm partitions A[l..r].

Assumptions: r > l.

3 of 4



COMP2350 - Algorithms
Fall 2022

Invariant Proofs

Invariant property: At the beginning of the for-loop, values in the range A[l+1..i]<-p and values in the
range A[i+1..j-1]>p.

Initialization: Both the A[l+1..i] and A[i+1..j-1] ranges are empty, so the two parts of the invariant
property are trivially true.

Maintenance: Assume that the property is true up to an index of k: A[l+1..i]<-p, A[i+1..k]>p. Show
that it is true up to k + 1 after running the for-loop one time.

If A[k+1]>p, no values are swapped and i is unchanged. The >p partition has increased in size by 1 and
the <-p partition has not changed, so the invariant property remains true. If A[k+1]<-p, both i and j are
incremented, which increases the <-p partition’s size by 1. The current value is swapped into that partition,
and a value >p (the value at i) is swapped to the >p partition. Therefore the invariant property stays correct
in that case too.

Termination: We looped through the full A[l+1..r] range. Therefore A[l+1..i]<-p and A[i+1..r]>p. p is
swapped with A[i], which ends our algorithm with the condition that A[l..i-1]<-p, A[i]=p, A[i+1..r]>p.
The range is correctly partitioned.

4 of 4


	Invariant Proofs
	Purpose

	Proof By Induction
	Definition
	Examples
	Triangular numbers
	Sum of Squares


	Invariant Proofs
	Definition
	Purpose
	Examples
	Radix Sort
	Partition



