

Knapsack

0-1 Knapsack Example Time Complexit

Dynamic Programming

Knapsack

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Dynamic Programming

0-1 Knapsack

Given *n* objects with integer weights w_i and values v_i , what is the most valuable subset that weighs $\leq W$

Give an algorithm that runs in O(nW) time.

0-1 Knapsack

Knapsack 0-1 Knapsack Example Time Complexity

Dynamic Programming

Given *n* objects with integer weights w_i and values v_i , what is the most valuable subset that weighs $\leq W$

Give an algorithm that runs in O(nW) time.

Example

Knapsack 0-1 Knapsack Example Time Complexity

Dynamic Programming

Calculate the best value you can store in a knapsack with W = 7, based on the following price table:

weight w _i	3	2	1	5	4	
price p_i	9	7	3	9	10	

How can we reconstruct the solution (decide which items to include to get the best price)?

Example

Knapsack Example

Dynamic Programming

Calculate the best value you can store in a knapsack with W = 7, based on the following price table:

 weight w_i 3
 2
 1
 5
 4

 price p_i 9
 7
 3
 9
 10

How can we reconstruct the solution (decide which items to include to get the best price)?

Dynamic Programming

Time Complexity

What is the length of the input?

pseudo-polynomial time: polynomial if the magnitude of the input numbers is polynomial in the input size

Does this apply to counting sort?

Dynamic Programming

Time Complexity

What is the length of the input?

pseudo-polynomial time: polynomial if the magnitude of the input numbers is polynomial in the input size

Does this apply to counting sort?

Dynamic Programming

Time Complexity

What is the length of the input?

pseudo-polynomial time: polynomial if the magnitude of the input numbers is polynomial in the input size

Does this apply to counting sort?

Knapsack

Dynamic Programming

Summary

Dynamic Programming

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Summary of Dynamic Programming

- optimal substructure: global optimum uses optimal solutions of subproblems
- 2 ordering of subproblems: solve 'smallest' first, build larger solutions from smaller
- 3 'overlapping' subproblems: polynomial number of subproblems, used multiple times
- independent subproblems: optimal solution of one subproblem doesn't affect optimality of another
 - top-down: memoization
 - bottom-up: compute table, then recover solution