
Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary Greedy Algorithms

School of Computing and Data Science - 1/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

Greedy

Make best local choice, then solve remaining subproblem.

E.g. optimal solution uses the greedy choice + optimal solution to
remaining subproblem

Unlike dynamic programming, we haven’t solved the
subproblems yet and don’t need to pick the best subsolution.

School of Computing and Data Science - 2/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

Activity Selection

Given n activities 1,2, . . . ,n, the ith activity corresponding to an
interval starting at si and finishing at fi, find a compatible set with
maximum size.

Make a choice: at each step, select the next activity to include in
the set.

Is there a rule to construct largest set?

School of Computing and Data Science - 3/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

"Rules" for Activity Selection

Earliest start time

Earliest finish time

Smallest interval

Least conflicts

Make a decision that is good locally before consulting more
subproblems.

School of Computing and Data Science - 4/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

"Rules" for Activity Selection

Earliest start time

Earliest finish time
Smallest interval

Least conflicts

Make a decision that is good locally before consulting more
subproblems.

School of Computing and Data Science - 4/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

Activity Selection Algorithm

1: R← all activities
2: A←{}
3: while R ̸= {} do
4: let t = activity in R with earliest finish time
5: R← R\{s : s conflicts with t,s ∈ R}
6: A← A∪{t}
7: return A

Is this optimal?

School of Computing and Data Science - 5/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

Example

Find the largest subset of non-overlapping events, based on the
following timetable:

event i a b c d e f g h i j k
si 1 3 0 5 3 5 6 8 8 2 12
fi 4 5 6 7 9 9 10 11 12 14 16

School of Computing and Data Science - 6/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

Optimal Substructure

Optimal substructure:

1 Let ⟨a1,a2, . . . ,ai⟩ be an optimal schedule.

2 Assume subschedule ⟨ak, . . . ,ai⟩ is suboptimal for time after
activity ak−1.

3 So, ∃ a sequence ⟨b1, . . . ,bj⟩ that is a better schedule for our
time interval (j > i− k).

4 Then ⟨a1, . . . ,ak−1,b1, . . . ,bj⟩ must be a better schedule.

5 Then there is a better schedule than our optimal schedule.
Our assumption must be false

School of Computing and Data Science - 7/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

Optimal Substructure

Optimal substructure:

1 Let ⟨a1,a2, . . . ,ai⟩ be an optimal schedule.

2 Assume subschedule ⟨ak, . . . ,ai⟩ is suboptimal for time after
activity ak−1.

3 So, ∃ a sequence ⟨b1, . . . ,bj⟩ that is a better schedule for our
time interval (j > i− k).

4 Then ⟨a1, . . . ,ak−1,b1, . . . ,bj⟩ must be a better schedule.

5 Then there is a better schedule than our optimal schedule.
Our assumption must be false

School of Computing and Data Science - 7/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

Optimal Substructure

Optimal substructure:

1 Let ⟨a1,a2, . . . ,ai⟩ be an optimal schedule.

2 Assume subschedule ⟨ak, . . . ,ai⟩ is suboptimal for time after
activity ak−1.

3 So, ∃ a sequence ⟨b1, . . . ,bj⟩ that is a better schedule for our
time interval (j > i− k).

4 Then ⟨a1, . . . ,ak−1,b1, . . . ,bj⟩ must be a better schedule.

5 Then there is a better schedule than our optimal schedule.
Our assumption must be false

School of Computing and Data Science - 7/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

Optimal Substructure

Optimal substructure:

1 Let ⟨a1,a2, . . . ,ai⟩ be an optimal schedule.

2 Assume subschedule ⟨ak, . . . ,ai⟩ is suboptimal for time after
activity ak−1.

3 So, ∃ a sequence ⟨b1, . . . ,bj⟩ that is a better schedule for our
time interval (j > i− k).

4 Then ⟨a1, . . . ,ak−1,b1, . . . ,bj⟩ must be a better schedule.

5 Then there is a better schedule than our optimal schedule.
Our assumption must be false

School of Computing and Data Science - 7/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

Optimal Substructure

Optimal substructure:

1 Let ⟨a1,a2, . . . ,ai⟩ be an optimal schedule.

2 Assume subschedule ⟨ak, . . . ,ai⟩ is suboptimal for time after
activity ak−1.

3 So, ∃ a sequence ⟨b1, . . . ,bj⟩ that is a better schedule for our
time interval (j > i− k).

4 Then ⟨a1, . . . ,ak−1,b1, . . . ,bj⟩ must be a better schedule.

5 Then there is a better schedule than our optimal schedule.
Our assumption must be false

School of Computing and Data Science - 7/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

The Greedy Choice Property

Greedy choice:

1 Let ⟨a1,a2, . . . ,ai⟩ be an optimal schedule.

2 If a1 is the activity with the earliest finish time, then the
greedy choice is part of an optimal solution.

3 If a1 does not have the earliest finish time, then ∃ an activity
b with an earlier finish time (f (b)< f (a1)).

4 Then ⟨b,a2, . . . ,ai⟩ must be an optimal solution.

This applies recursively to the subproblems:
Recall that ⟨a2, . . . ,ai⟩ is an optimal subsolution

School of Computing and Data Science - 8/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

The Greedy Choice Property

Greedy choice:

1 Let ⟨a1,a2, . . . ,ai⟩ be an optimal schedule.

2 If a1 is the activity with the earliest finish time, then the
greedy choice is part of an optimal solution.

3 If a1 does not have the earliest finish time, then ∃ an activity
b with an earlier finish time (f (b)< f (a1)).

4 Then ⟨b,a2, . . . ,ai⟩ must be an optimal solution.

This applies recursively to the subproblems:
Recall that ⟨a2, . . . ,ai⟩ is an optimal subsolution

School of Computing and Data Science - 8/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

The Greedy Choice Property

Greedy choice:

1 Let ⟨a1,a2, . . . ,ai⟩ be an optimal schedule.

2 If a1 is the activity with the earliest finish time, then the
greedy choice is part of an optimal solution.

3 If a1 does not have the earliest finish time, then ∃ an activity
b with an earlier finish time (f (b)< f (a1)).

4 Then ⟨b,a2, . . . ,ai⟩ must be an optimal solution.

This applies recursively to the subproblems:
Recall that ⟨a2, . . . ,ai⟩ is an optimal subsolution

School of Computing and Data Science - 8/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

The Greedy Choice Property

Greedy choice:

1 Let ⟨a1,a2, . . . ,ai⟩ be an optimal schedule.

2 If a1 is the activity with the earliest finish time, then the
greedy choice is part of an optimal solution.

3 If a1 does not have the earliest finish time, then ∃ an activity
b with an earlier finish time (f (b)< f (a1)).

4 Then ⟨b,a2, . . . ,ai⟩ must be an optimal solution.

This applies recursively to the subproblems:
Recall that ⟨a2, . . . ,ai⟩ is an optimal subsolution

School of Computing and Data Science - 8/9 - Frank Kreimendahl | kreimendahlf@wit.edu



Greedy
Algorithms
Greedy

Act. Selection

"Rules"

Algorithm

Example

Opt. Substructure

Greedy Choice

Summary

Summary of Greedy Algorithms

Make the best local choice, then solve remaining subproblem.
An optimal solution uses the greedy choice + the optimal solution
to the remaining subproblem.

1 prove greedy choice: can convert optimal solution to one
that uses a greedy choice

2 prove optimal substructure: optimal solution uses optimal
solutions of subproblems

School of Computing and Data Science - 9/9 - Frank Kreimendahl | kreimendahlf@wit.edu


	Greedy Algorithms
	Greedy
	Act. Selection
	"Rules"
	Algorithm
	Example
	Opt. Substructure
	Greedy Choice
	Summary


