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Greedy

Make best local choice, then solve remaining subproblem.

E.g. optimal solution uses the greedy choice + optimal solution to
remaining subproblem

Unlike dynamic programming, we haven’t solved the
subproblems yet and don’t need to pick the best subsolution.
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Activity Selection

Given n activities 1,2, . . . ,n, the ith activity corresponding to an
interval starting at si and finishing at fi, find a compatible set with
maximum size.

Make a choice: at each step, select the next activity to include in
the set.

Is there a rule to construct largest set?
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"Rules" for Activity Selection

Earliest start time

Earliest finish time

Smallest interval

Least conflicts

Make a decision that is good locally before consulting more
subproblems.
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Activity Selection Algorithm

1: R← all activities
2: A←{}
3: while R ̸= {} do
4: let t = activity in R with earliest finish time
5: R← R\{s : s conflicts with t,s ∈ R}
6: A← A∪{t}
7: return A

Is this optimal?
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Example

Find the largest subset of non-overlapping events, based on the
following timetable:

event i a b c d e f g h i j k
si 1 3 0 5 3 5 6 8 8 2 12
fi 4 5 6 7 9 9 10 11 12 14 16
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Optimal Substructure

Optimal substructure:

1 Let ⟨a1,a2, . . . ,ai⟩ be an optimal schedule.

2 Assume subschedule ⟨ak, . . . ,ai⟩ is suboptimal for time after
activity ak−1.

3 So, ∃ a sequence ⟨b1, . . . ,bj⟩ that is a better schedule for our
time interval (j > i− k).

4 Then ⟨a1, . . . ,ak−1,b1, . . . ,bj⟩ must be a better schedule.

5 Then there is a better schedule than our optimal schedule.
Our assumption must be false
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The Greedy Choice Property

Greedy choice:

1 Let ⟨a1,a2, . . . ,ai⟩ be an optimal schedule.

2 If a1 is the activity with the earliest finish time, then the
greedy choice is part of an optimal solution.

3 If a1 does not have the earliest finish time, then ∃ an activity
b with an earlier finish time (f (b)< f (a1)).

4 Then ⟨b,a2, . . . ,ai⟩ must be an optimal solution.

This applies recursively to the subproblems:
Recall that ⟨a2, . . . ,ai⟩ is an optimal subsolution
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Summary of Greedy Algorithms

Make the best local choice, then solve remaining subproblem.
An optimal solution uses the greedy choice + the optimal solution
to the remaining subproblem.

1 prove greedy choice: can convert optimal solution to one
that uses a greedy choice

2 prove optimal substructure: optimal solution uses optimal
solutions of subproblems

School of Computing and Data Science - 9/9 - Frank Kreimendahl | kreimendahlf@wit.edu


	Greedy Algorithms
	Greedy
	Act. Selection
	"Rules"
	Algorithm
	Example
	Opt. Substructure
	Greedy Choice
	Summary


