

- Problems
- Graph Cuts

Kruskal's Algorithm

Prim's Algorithm

Spanning Trees

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Problems

Spanning Trees

- Problems
- Graph Cuts Basic Approach

Kruskal's Algorithm

Prim's Algorithm

- power, water distribution
- network connectivity
- wiring, VSLI
- image segmentation

number of edges? cycles?

Graph Cuts

Spanning Trees Problems Graph Cuts

Basic Approach

Kruskal's Algorithm

Prim's Algorithm In a graph, a *cut* is a partitioning of all the graph's vertices into two disjoint sets.

Many algorithms are concerned with edges that *cross* the cut – edges with their two endpoints in different sets.

Spanning Trees Problems Graph Cuts Basic Approach

Kruskal's Algorithm Prim's Algorithm

Basic Approach

Starting from \emptyset , grow spanning tree by adding edges.

Theorem: take any cut that respects the growing tree. A lightest edge crossing the cut can be added to the tree.

Proof: if a MST T includes our edge, our choice was a good one. Otherwise, consider an edge in T that crosses the cut. Substitute it with the lightest one and the cost of the MST can't go up.

Spanning Trees Problems Graph Cuts Basic Approach

Kruskal's Algorithm Prim's Algorithm **Basic Approach**

Starting from \emptyset , grow spanning tree by adding edges.

Theorem: take any cut that respects the growing tree. A lightest edge crossing the cut can be added to the tree.

Proof: if a MST T includes our edge, our choice was a good one. Otherwise, consider an edge in T that crosses the cut. Substitute it with the lightest one and the cost of the MST can't go up.

Kruskal's Algorithm

Algorithm

Prim's Algorithm

Kruskal's Algorithm

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Kruskal's Algorithm

Algorithm

Prim's Algorithm

Kruskal's Algorithm

Connect separate components until the vertices are spanned.

- 1: $T \leftarrow \emptyset$
- 2: for all vertex v do
- 3: MAKE-SET(v)
- 4: for all edges (u, v) in sorted order do
- 5: **if** FIND-SET $(u) \neq$ FIND-SET(v) **then**
- 6: add (u, v) to T
- 7: UNION(u, v)
- 8: return T

correctness? runtime complexity?

School of Computing and Data Science

Kruskal's Algorithm

Prim's Algorithm

Algorithm

Prim's Algorithm

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Kruskal's Algorithm

Prim's Algorithm

Algorithm

Prim's Algorithm

grow tree until fully connected

- 1: foreach vertex $v \in G$, $v.c \leftarrow \infty$, $v.\pi \leftarrow nil$
- 2: *start.c* \leftarrow 0
- 3: $Q \leftarrow \text{min-heap of all vertices (sorted on } c)$
- 4: while *Q* not empty do
- 5: $u \leftarrow \text{Extract-Min}(Q)$
- 6: **for all** neighbor v of u **do**
- 7: **if** $v \in Q$ and w(u, v) < v.c **then**
- 8: $v.c \leftarrow w(u,v)$
- 9: $v.\pi \leftarrow u$
- 10: return $\{(v, v. \pi) : v \in V\}$

correctness? invariant? runtime complexity?

School of Computing and Data Science