
Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Complexity

School of Computing and Data Science - 1/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Sorting

Bubble sort

Selection sort

Insertion sort

Shell sort

Merge sort

Heap sort

Quick sort

How do we sort one million records?
How do we sort one billion 16-bit integers?
How do we sort one trillion 4-bit integers?

School of Computing and Data Science - 2/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Sorting

Bubble sort

Selection sort

Insertion sort

Shell sort

Merge sort

Heap sort

Quick sort

How do we sort one million records?
How do we sort one billion 16-bit integers?
How do we sort one trillion 4-bit integers?

School of Computing and Data Science - 2/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Sorting

Bubble sort

Selection sort

Insertion sort

Shell sort

Merge sort

Heap sort

Quick sort

How do we sort one million records?
How do we sort one billion 16-bit integers?
How do we sort one trillion 4-bit integers?

School of Computing and Data Science - 2/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Counting Sort

For n numbers in the range 0 to k:

1: for x from 0 to k do
2: count[x]← 0
3: for all input number x do
4: increment count[x]
5: for x from 0 to k do
6: print x count[x] times

Correctness?

Complexity?

School of Computing and Data Science - 3/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Counting Sort

For n numbers in the range 0 to k:

1: for x from 0 to k do
2: count[x]← 0
3: for all input number x do
4: increment count[x]
5: for x from 0 to k do
6: print x count[x] times

Correctness?

Complexity?

School of Computing and Data Science - 3/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Correctness

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant: for each value,

remaining input + tally in count array = total
proof sketch:
initialized/established: before line 3
maintained: through lines 3-4
at termination: no remaining input

each number printed count times
therefore, output has same numbers as input

School of Computing and Data Science - 4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Correctness

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant:
invariant: for each value,

remaining input + tally in count array = total
proof sketch:
initialized/established: before line 3
maintained: through lines 3-4
at termination: no remaining input

each number printed count times
therefore, output has same numbers as input

School of Computing and Data Science - 4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Correctness

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant: for each value,

remaining input + tally in count array = total
proof sketch:
initialized/established: before line 3
maintained: through lines 3-4
at termination: no remaining input

each number printed count times
therefore, output has same numbers as input

School of Computing and Data Science - 4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Correctness

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant: for each value,

remaining input + tally in count array = total
proof sketch:
initialized/established: before line 3
maintained: through lines 3-4
at termination: no remaining input

each number printed count times
therefore, output has same numbers as input

School of Computing and Data Science - 4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Correctness

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant: for each value,

remaining input + tally in count array = total
proof sketch:
initialized/established: before line 3
maintained: through lines 3-4
at termination: no remaining input

each number printed count times
therefore, output has same numbers as input

School of Computing and Data Science - 4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Correctness

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant: for each value,

remaining input + tally in count array = total
proof sketch:
initialized/established: before line 3
maintained: through lines 3-4
at termination: no remaining input

each number printed count times
therefore, output has same numbers as input

School of Computing and Data Science - 4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Correctness

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant: for each value,

remaining input + tally in count array = total
proof sketch:
initialized/established: before line 3
maintained: through lines 3-4
at termination: no remaining input

each number printed count times
therefore, output has same numbers as input

School of Computing and Data Science - 4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Complexity

For n numbers in the range 0 to k:

1: for x from 0 to k do
2: count[x]← 0 O(k)
3: for all input number x do
4: increment count[x] O(n)
5: for x from 0 to k do
6: print x count[x] times O(k+n)

O(k+n+ k+n) = O(2k+2n) = O(k+n) ̸= O(n lgn)

School of Computing and Data Science - 5/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Complexity

For n numbers in the range 0 to k:

1: for x from 0 to k do
2: count[x]← 0 O(k)
3: for all input number x do
4: increment count[x] O(n)
5: for x from 0 to k do
6: print x count[x] times O(k+n)

O(k+n+ k+n) = O(2k+2n) = O(k+n) ̸= O(n lgn)

School of Computing and Data Science - 5/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

Order Notation

Rules of thumb:

ignore constant factors

ignore ‘start-up’ costs

focus on upper bound
(worst-case scenario)

f (n) = O(g(n))

eg, running time is O(n) = n lgn

School of Computing and Data Science - 6/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

O()

Definition

O(g(n)) = {f (n) : ∃ positive constants c,n0

such that f (n)≤ cg(n) for all n≥ n0}

We can upper-bound (the tail of) f by scaling g by a consant

Example

Show that O(n2) = 3n2 +6n+1: pick an appropriate c and n0.

1 0.002n2−35000n+280

2 O(n2) vs O(n3)
3 O(n lgn) vs O(n)
4 O(n2) vs O(n6) vs O(2n)

What does n signify?

School of Computing and Data Science - 7/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

O()

Definition

O(g(n)) = {f (n) : ∃ positive constants c,n0

such that f (n)≤ cg(n) for all n≥ n0}

We can upper-bound (the tail of) f by scaling g by a consant

Example

Show that O(n2) = 3n2 +6n+1: pick an appropriate c and n0.

1 0.002n2−35000n+280

2 O(n2) vs O(n3)
3 O(n lgn) vs O(n)
4 O(n2) vs O(n6) vs O(2n)

What does n signify?

School of Computing and Data Science - 7/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

O()

Definition

O(g(n)) = {f (n) : ∃ positive constants c,n0

such that f (n)≤ cg(n) for all n≥ n0}

We can upper-bound (the tail of) f by scaling g by a consant

Example

Show that O(n2) = 3n2 +6n+1: pick an appropriate c and n0.

1 0.002n2−35000n+280

2 O(n2) vs O(n3)
3 O(n lgn) vs O(n)
4 O(n2) vs O(n6) vs O(2n)

What does n signify?

School of Computing and Data Science - 7/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Complexity
Sorting

Counting Sort

Correctness

Complexity

Order Notation

O()

And Friends

And Friends

Upper bound(‘order of’):

O(g(n)) = {f (n) : ∃ positive constants c,n0

such that f (n)≤ cg(n) for all n≥ n0}

Lower bound:

Ω(g(n)) = {f (n) : ∃ positive constants c,n0

such that f (n)≥ cg(n) for all n≥ n0}

Tight bound:

Θ(g(n)) = {f (n) : ∃ positive constants c1,c2,n0

such that c1g(n)≤ f (n)≤ c2g(n) for all n≥ n0}

School of Computing and Data Science - 8/8 - Frank Kreimendahl | kreimendahlf@wit.edu


	Complexity
	Sorting
	Counting Sort
	Correctness
	Complexity
	Order Notation
	O()
	And Friends


