

Complexity

Sorting Counting Sort Correctness Complexity Order Notation O() And Friends

Complexity

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Sorting

Complexity

- Sorting Counting Sort Correctness Complexity Order Notation
- O() And Friend

- Bubble sort
- Selection sort
- Insertion sort
- Shell sort
- Merge sort
- Heap sort
- Quick sort

How do we sort one million records?

How do we sort one billion **16-bit integers**? How do we sort one trillion **4-bit integers**?

Sorting

Complexity

- Sorting Counting Sort Correctness Complexity Order Notation
- O() And Friends

- Bubble sort
- Selection sort
- Insertion sort
- Shell sort
- Merge sort
- Heap sort
- Quick sort

How do we sort one million records? How do we sort one billion **16-bit integers**?

How do we sort one trillion 4-bit integers?

Sorting

Complexity

- Sorting Counting Sort Correctness Complexity Order Notation O()
- O() And Friends

- Bubble sort
- Selection sort
- Insertion sort
- Shell sort
- Merge sort
- Heap sort
- Quick sort

How do we sort one million records? How do we sort one billion **16-bit integers**? How do we sort one trillion **4-bit integers**?

Counting Sort

Complexity

Counting Sort

Correctness Complexity Order Notation O() And Friends For *n* numbers in the range 0 to *k*:

- 1: **for** *x* from 0 to *k* **do**
- 2: $\operatorname{count}[x] \leftarrow 0$
- 3: for all input number x do
- 4: increment count[x]
- 5: **for** *x* from 0 to *k* **do**
- 6: print x count[x] times

Correctness

Complexity?

Counting Sort

Complexity

Counting Sort

Correctness Complexity Order Notation O() And Friends For *n* numbers in the range 0 to *k*:

- 1: **for** *x* from 0 to *k* **do**
- 2: $\operatorname{count}[x] \leftarrow 0$
- 3: for all input number *x* do
- 4: increment count[x]
- 5: **for** *x* from 0 to *k* **do**
- 6: print x count[x] times

Correctness?

Complexity?

Complexity Sorting Counting Sort Correctness Complexity Order Notation O() And Friends

property 1: output is in sorted order proof sketch: loop in (5) increments x

property 2: output contains same numbers as input invariant: for each value, remaining input + tally in count array = total proof sketch: initialized/established: before line 3 maintained: through lines 3-4

termination: no remaining input each number printed *count* times

therefore, output has same numbers as input

Complexity Sorting Counting Sort Correctness Complexity Order Notation O() And Friends

property 1: output is in sorted order proof sketch: loop in (5) increments x

property 2: output contains same numbers as input invariant:

nvariant: for each value,

remaining input + tally in count array = total proof sketch: initialized/established: before line 3 maintained: through lines 3-4 at termination: no remaining input each number printed *count* times therefore, output has same numbers as input

Complexity Sorting Counting Sort Correctness Complexity Order Notation O() And Friends

property 1: output is in sorted order proof sketch: loop in (5) increments x

property 2: output contains same numbers as input invariant: for each value,

remaining input + tally in count array = total

broof sketch: nitialized/established: before line 3 maintained: through lines 3-4 at termination: no remaining input each number printed *count* times therefore, output has same numbers as input

Complexity Sorting Counting Sort Correctness Complexity Order Notation O() And Friends

property 1: output is in sorted order proof sketch: loop in (5) increments x

property 2: output contains same numbers as input invariant: for each value,

remaining input + tally in count array = total proof sketch:

initialized/established: before line 3 maintained: through lines 3-4 at termination: no remaining input each number printed *count* times therefore, output has same numbers as input

Complexity Sorting Counting Sort Correctness Complexity Order Notation O() And Friends

property 1: output is in sorted order proof sketch: loop in (5) increments x

property 2: output contains same numbers as input invariant: for each value,

remaining input + tally in count array = total proof sketch:

initialized/established: before line 3

maintained: through lines 3-4 at termination: no remaining input each number printed *count* times therefore, output has same numbers as input

Complexity Sorting Counting Sort Correctness Complexity Order Notation O() And Friends

property 1: output is in sorted order proof sketch: loop in (5) increments x

property 2: output contains same numbers as input invariant: for each value,

remaining input + tally in count array = total proof sketch:

initialized/established: before line 3 maintained: through lines 3-4

termination: no remaining input each number printed *count* times therefore, output has same numbers as input

Complexity Sorting Counting Sort Correctness Complexity Order Notation O() And Friends

property 1: output is in sorted order proof sketch: loop in (5) increments x

property 2: output contains same numbers as input invariant: for each value,

remaining input + tally in count array = total proof sketch:

initialized/established: before line 3

maintained: through lines 3-4

at termination: no remaining input

each number printed *count* times

therefore, output has same numbers as input

Complexity

Complexity Sorting Counting Sort Correctness Complexity Order Notation O() And Friends

For *n* numbers in the range 0 to *k*:

- 1: **for** *x* from 0 to *k* **do**
- 2: $\operatorname{count}[x] \leftarrow 0$ O(k)
- 3: for all input number *x* do
- 4: increment count[x] O(n)
- 5: **for** *x* from 0 to *k* **do**
- 6: print x count[x] times O(k+n)

$$O(k+n+k+n) = O(2k+2n) = O(k+n) \neq O(n \lg n)$$

Complexity

Complexity

Sorting Counting Sort Correctness Complexity Order Notation O() And Friends

For *n* numbers in the range 0 to *k*:

- 1: **for** *x* from 0 to *k* **do**
- 2: $\operatorname{count}[x] \leftarrow 0$ O(k)
- 3: **for all** input number *x* **do**
- 4: increment count[x] O(n)
- 5: **for** *x* from 0 to *k* **do**
- 6: print x count[x] times O(k+n)

$$O(k+n+k+n) = O(2k+2n) = O(k+n) \neq O(n\lg n)$$

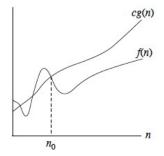
D() And Friends

Order Notation

Rules of thumb:

- ignore constant factors
- ignore 'start-up' costs
- focus on upper bound (worst-case scenario)

$$f(n) = O(g(n))$$



eg, running time is $O(n) = n \lg n$

O() And Frien

Definition

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0\}$

such that $f(n) \le cg(n)$ for all $n \ge n_0$

We can upper-bound (the tail of) f by scaling g by a consant

Example

Show that $O(n^2) = 3n^2 + 6n + 1$: pick an appropriate *c* and n_0 .

 $0.002n^2 - 35000n + 2^{80}$ $O(n^2)$ vs $O(n^3)$ O(n1gn) vs O(n) $O(n^2)$ vs $O(n^6)$ vs $O(2^n)$

What does n signify?

O() And Frien

Definition

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0\}$

such that $f(n) \leq cg(n)$ for all $n \geq n_0$

We can upper-bound (the tail of) f by scaling g by a consant

Example

Show that $O(n^2) = 3n^2 + 6n + 1$: pick an appropriate *c* and n_0 .

1
$$0.002n^2 - 35000n + 2^{80}$$

2 $O(n^2)$ vs $O(n^3)$
3 $O(n\lg n)$ vs $O(n)$
4 $O(n^2)$ vs $O(n^6)$ vs $O(2^n)$

What does *n* signify?

O() And Frien

Definition

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0\}$

such that $f(n) \leq cg(n)$ for all $n \geq n_0$

We can upper-bound (the tail of) f by scaling g by a consant

Example

Show that $O(n^2) = 3n^2 + 6n + 1$: pick an appropriate *c* and n_0 .

1
$$0.002n^2 - 35000n + 2^{80}$$

2 $O(n^2)$ vs $O(n^3)$
3 $O(nlgn)$ vs $O(n)$
4 $O(n^2)$ vs $O(n^6)$ vs $O(2^n)$

What does n signify?

And Friends

Upper bound('order of'):

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0$ such that $f(n) \le cg(n)$ for all $n \ge n_0\}$

Lower bound:

 $\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0$ such that $f(n) \ge cg(n)$ for all $n \ge n_0\}$

Tight bound:

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, n_0$ such that $c_1g(n) \le f(n) \le c_2g(n) \text{ for all } n \ge n_0\}$