Complexity

Complexity

School of Computing and Data Science - 1/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Bubble sort
Selection sort
Insertion sort

|
|
[
m Shell sort
[
[
[

Merge sort
Heap sort
Quick sort

How do we sort one million records?

School of Computing and Data Science -2/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Bubble sort
Selection sort
Insertion sort

|
|
[
m Shell sort
[
[
[

Merge sort
Heap sort
Quick sort

How do we sort one million records?
How do we sort one billion 16-bit integers?

School of Computing and Data Science -2/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Bubble sort
Selection sort
Insertion sort

|
|
[
m Shell sort
[
[
[

Merge sort
Heap sort
Quick sort

How do we sort one million records?
How do we sort one billion 16-bit integers?
How do we sort one trillion 4-bit integers?

School of Computing and Data Science -2/8 - Frank Kreimendahl | kreimendahlf@wit.edu



" Counting Sort

Complexity

For n numbers in the range O to k:

Counting Sort

1: for x from O to k do

2 count[x] < 0

3: for all input number x do
4: increment count|x]

5: for x from O to k do

6 print x count[x] times

School of Computing and Data Science -3/8 - Frank Kreimendahl | kreimendahlf@wit.edu



' " Counting Sort

Complexity

For n numbers in the range O to k:

Counting Sort

1: for x from O to k do

2: count[x] < 0

3: for all input number x do
4: increment count|x]

5: for x from O to k do

6: print x count[x] times

Correctness?

Complexity?

School of Computing and Data Science -3/8 - Frank Kreimendahl | kreimendahlf@wit.edu



4

Correctness

Complexity

property 1: output is in sorted order
proof sketch: loop in (5) increments x

Correctness

School of Computing and Data Science -4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



4

Correctness

Complexity
property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant:

School of Computing and Data Science -4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



4

Correctness

Complexity

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant: for each value,
remaining input + tally in count array = total

School of Computing and Data Science -4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



4

Correctness

Complexity

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant: for each value,

remaining input + tally in count array = total
proof sketch:

School of Computing and Data Science -4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Correctness

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant: for each value,

remaining input + tally in count array = total
proof sketch:
initialized/established: before line 3

School of Computing and Data Science -4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



Correctness

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant: for each value,

remaining input + tally in count array = total
proof sketch:
initialized/established: before line 3
maintained: through lines 3-4

School of Computing and Data Science -4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



' ' ' Correctness

Complexity

property 1: output is in sorted order
proof sketch: loop in (5) increments x

property 2: output contains same numbers as input
invariant: for each value,

remaining input + tally in count array = total
proof sketch:
initialized/established: before line 3
maintained: through lines 3-4
at termination: no remaining input

each number printed count times

therefore, output has same numbers as input

School of Computing and Data Science -4/8 - Frank Kreimendahl | kreimendahlf@wit.edu



' ' 4 Complexity

Complexity

For n numbers in the range O to k:

1: for x from O to k do

2 count[x] < 0 O(k)

3: for all input number x do

4: increment count|[x] O(n)

5: for x from O to k do

6 print x count[x] times O(k+n)

O(k+n+k+n)=02k+2n)=0(k+n)

School of Computing and Data Science -5/8 - Frank Kreimendahl | kreimendahlf@wit.edu



' ' 4 Complexity

Complexity

For n numbers in the range O to k:

1: for x from O to k do

2 count[x] < 0 O(k)

3: for all input number x do

4: increment count|[x] O(n)

5: for x from O to k do

6 print x count[x] times O(k+n)

O(k+n+k+n)=0(2k+2n) =O0(k+n) # O(nlgn)

School of Computing and Data Science -5/8 - Frank Kreimendahl | kreimendahlf@wit.edu



' Order Notation

Complexity

Rules of thumb:

m ignore constant factors f(n) =0(g(n))

Order Notation

m ignore ‘start-up’ costs

cgm)
m focus on upper bound
(worst-case scenario) O
__H_/
n

eg, running time is O(n) = nlgn

School of Computing and Data Science -6/8 - Frank Kreimendahl | kreimendahlf@wit.edu



O(g(n)) = {f(n) : 3 positive constants c, ny
such that f(n) < cg(n) for all n > ng}

We can upper-bound (the tail of) f by scaling g by a consant

Show that O(n?) = 3n* + 6n 4+ 1: pick an appropriate ¢ and ny.

School of Computing and Data Science -7/8 - Frank Kreimendahl | kreimendahlf@wit.edu



O(g(n)) = {f(n) : 3 positive constants c, ny
such that f(n) < cg(n) for all n > ng}

We can upper-bound (the tail of) f by scaling g by a consant

Show that O(n?) = 3n* + 6n 4+ 1: pick an appropriate ¢ and ny.

H 0.0021% — 350001 + 289
0(n?) vs O(n®)

O(nlgn) vs O(n)

0(n?) vs O(n®) vs 0(2")

School of Computing and Data Science -7/8 - Frank Kreimendahl | kreimendahlf@wit.edu



O(g(n)) = {f(n) : 3 positive constants c¢,ng
such that f(n) < cg(n) for all n > ng}

We can upper-bound (the tail of) f by scaling g by a consant

Show that O(n?) = 3n* + 6n 4+ 1: pick an appropriate ¢ and ny.

H 0.0021% — 350001 + 289
0(n?) vs O(n®)

O(nlgn) vs O(n)

0(n?) vs O(n®) vs 0(2")

What does 7 signify?

School of Computing and Data Science -7/8 - Frank Kreimendahl | kreimendahlf@wit.edu



' " And Friends

Complexity Upper bound(‘order of”):

O(g(n)) = {f(n) : 3 positive constants c,ng
such that f(n) < cg(n) foralln > ng}

And Friends,

Lower bound:

Q(g(n)) = {f(n) : 3 positive constants c,ng
such that f(n) > cg(n) foralln > ng}

Tight bound:

O(g(n)) = {f(n) : 3 positive constants cy,c2,ng
such that ¢;g(n) <f(n) < cyg(n) forall n > ny}

School of Computing and Data Science -8/8 - Frank Kreimendahl | kreimendahlf@wit.edu



	Complexity
	Sorting
	Counting Sort
	Correctness
	Complexity
	Order Notation
	O()
	And Friends


