
Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Heaps

School of Computing and Data Science - 1/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Motivating Problems

1 Finding the min

2 Finding the min with insertions

3 Finding the min with insertions and deletions

School of Computing and Data Science - 2/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Motivating Problems

1 Finding the min

2 Finding the min with insertions

3 Finding the min with insertions and deletions

School of Computing and Data Science - 2/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Motivating Problems

1 Finding the min

2 Finding the min with insertions

3 Finding the min with insertions and deletions

School of Computing and Data Science - 2/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Heaps

Solve using a binary tree data structure

Heap invariant property: parent is smaller than (or equal to) both
children

(This is specifically a min-heap. The max-heap invariant flips the
inequality.)

School of Computing and Data Science - 3/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Insertion

1 insert at bottom of tree

2 re-establish invariant by pulling value up

School of Computing and Data Science - 4/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Insertion

1 insert at bottom of tree

2 re-establish invariant by pulling value up

School of Computing and Data Science - 4/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Extract Min

1 remove root

2 move last node into root

3 re-establish invariant by pushing value down

heapsort

School of Computing and Data Science - 5/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Extract Min

1 remove root

2 move last node into root

3 re-establish invariant by pushing value down

heapsort

School of Computing and Data Science - 5/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Array Implementation of Tree

Rules for array index:

parent of i = ⌊ i−1
2 ⌋

left child of i = 2i+1

right child of i = 2i+2

automatically balanced!

School of Computing and Data Science - 6/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Pull Up – Insertion Helper

assume heap except at element i, A[i] might be too small

pullup(i)

1: if A[i]< A[parenti] then
2: swap A[i] with A[parenti]
3: pullup(parenti)

invariant: initialization, maintenance, terminination

School of Computing and Data Science - 7/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Push Down – Extraction Helper

assume heap except at element i, A[i] might be too large

pushdown(i)
1: mini← index of smallest among i and valid children of i
2: if mini ̸= i then
3: swap A[i] with A[mini]
4: pushdown(mini)

invariant: initialization, maintenance, terminination

School of Computing and Data Science - 8/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Analysis

Correctness

What is the space complexity?

What is the time complexity?

School of Computing and Data Science - 9/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Construction

Given an array, how do we construct a heap?

Can we do better than O(n lgn) time?

bottom up creation:
for i from length

2 −1 to 0 do
pushdown(i)

what is this time complexity?

School of Computing and Data Science - 10/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Construction

Given an array, how do we construct a heap?

Can we do better than O(n lgn) time?

bottom up creation:
for i from length

2 −1 to 0 do
pushdown(i)

what is this time complexity?

School of Computing and Data Science - 10/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Construction

Given an array, how do we construct a heap?

Can we do better than O(n lgn) time?

bottom up creation:
for i from length

2 −1 to 0 do
pushdown(i)

what is this time complexity?

School of Computing and Data Science - 10/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Heap Creation Time Complexity

height of a node is maximum distance to a leaf
countx is the number of nodes in a tree with height x

lgn

∑
h=0

(O(h)× counth)

There are n
2h+1 nodes with height h

lgn

∑
h=0

O(h)
n

2h+1 = O

(
n

lgn

∑
h=0

h
2h+1

)

School of Computing and Data Science - 11/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

More Time Complexity

∞

∑
h=0

h
2h = 2, so

lgn

∑
h=0

h
2h < 2

O

(
n

lgn

∑
h=0

h
2h+1

)
= O

(
n

∞

∑
h=0

h
2h

)
= O(n)

School of Computing and Data Science - 12/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Sizing The Array

resize by doubling array size

‘amortized’ analysis: the ‘accounting method’

1 start with array half full, 0 accrued steps
2 each insertion takes 3 steps

a insert self now
b move self when array full
c move an existing element when array full

3 when array is full, we have 1 move step for each item

4 after move, array is half full, 0 accrued steps

School of Computing and Data Science - 13/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Amortization

‘amortized’ analysis: the ‘aggregate method’
Let ci = i if i−1 is a power of 2, 1 otherwise

n

∑
i=1

ci ≤ n+
lgn

∑
j=0

2j

< n+2n

< 3n

School of Computing and Data Science - 14/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Sorting

School of Computing and Data Science - 15/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Lower Bounds

How many possible outputs are there for arranging n items?
Binary decision tree with n! leaves has height at least lg(n!)
Stirling approximation: n! =

√
2πn(n

e )
n(1+Θ(1

n))
so:
lg(n!) = lg(

√
2πn(n

e )
n(1+Θ(1

n)))

= lg
√

2π + lg
√

n+ lg
(
(n

e )
n
)
+ lg

(
1+Θ(1

n)
)

= Θ
(
lg
√

n+n lg(n
e )+ lg

(
1+Θ(1

n)
))

= Θ(n lgn)
so comparison-based sorting takes Ω(n lgn) time

School of Computing and Data Science - 16/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Lower Bounds

How many possible outputs are there for arranging n items?
Binary decision tree with n! leaves
Binary decision tree with n! leaves has height at least lg(n!)
Stirling approximation: n! =

√
2πn(n

e )
n(1+Θ(1

n))
so:
lg(n!) = lg(

√
2πn(n

e )
n(1+Θ(1

n)))

= lg
√

2π + lg
√

n+ lg
(
(n

e )
n
)
+ lg

(
1+Θ(1

n)
)

= Θ
(
lg
√

n+n lg(n
e )+ lg

(
1+Θ(1

n)
))

= Θ(n lgn)
so comparison-based sorting takes Ω(n lgn) time

School of Computing and Data Science - 16/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Lower Bounds

How many possible outputs are there for arranging n items?
Binary decision tree with n! leaves has height at least lg(n!)
Stirling approximation: n! =

√
2πn(n

e )
n(1+Θ(1

n))
so:
lg(n!) = lg(

√
2πn(n

e )
n(1+Θ(1

n)))

= lg
√

2π + lg
√

n+ lg
(
(n

e )
n
)
+ lg

(
1+Θ(1

n)
)

= Θ
(
lg
√

n+n lg(n
e )+ lg

(
1+Θ(1

n)
))

= Θ(n lgn)
so comparison-based sorting takes Ω(n lgn) time

School of Computing and Data Science - 16/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Lower Bounds

How many possible outputs are there for arranging n items?
Binary decision tree with n! leaves has height at least lg(n!)
Stirling approximation: n! =

√
2πn(n

e )
n(1+Θ(1

n))
so:
lg(n!) = lg(

√
2πn(n

e )
n(1+Θ(1

n)))

= lg
√

2π + lg
√

n+ lg
(
(n

e )
n
)
+ lg

(
1+Θ(1

n)
)

= Θ
(
lg
√

n+n lg(n
e )+ lg

(
1+Θ(1

n)
))

= Θ(n lgn)
so comparison-based sorting takes Ω(n lgn) time

School of Computing and Data Science - 16/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Lower Bounds

How many possible outputs are there for arranging n items?
Binary decision tree with n! leaves has height at least lg(n!)
Stirling approximation: n! =

√
2πn(n

e )
n(1+Θ(1

n))
so:
lg(n!) = lg(

√
2πn(n

e )
n(1+Θ(1

n)))

= lg
√

2π + lg
√

n+ lg
(
(n

e )
n
)
+ lg

(
1+Θ(1

n)
)

= Θ
(
lg
√

n+n lg(n
e )+ lg

(
1+Θ(1

n)
))

= Θ(n lgn)
so comparison-based sorting takes Ω(n lgn) time

School of Computing and Data Science - 16/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Lower Bounds

How many possible outputs are there for arranging n items?
Binary decision tree with n! leaves has height at least lg(n!)
Stirling approximation: n! =

√
2πn(n

e )
n(1+Θ(1

n))
so:
lg(n!) = lg(

√
2πn(n

e )
n(1+Θ(1

n)))

= lg
√

2π + lg
√

n+ lg
(
(n

e )
n
)
+ lg

(
1+Θ(1

n)
)

= Θ
(
lg
√

n+n lg(n
e )+ lg

(
1+Θ(1

n)
))

= Θ(n lgn)
so comparison-based sorting takes Ω(n lgn) time

School of Computing and Data Science - 16/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Lower Bounds

How many possible outputs are there for arranging n items?
Binary decision tree with n! leaves has height at least lg(n!)
Stirling approximation: n! =

√
2πn(n

e )
n(1+Θ(1

n))
so:
lg(n!) = lg(

√
2πn(n

e )
n(1+Θ(1

n)))

= lg
√

2π + lg
√

n+ lg
(
(n

e )
n
)
+ lg

(
1+Θ(1

n)
)

= Θ
(
lg
√

n+n lg(n
e )+ lg

(
1+Θ(1

n)
))

= Θ(n lgn)
so comparison-based sorting takes Ω(n lgn) time

School of Computing and Data Science - 16/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Lower Bounds

How many possible outputs are there for arranging n items?
Binary decision tree with n! leaves has height at least lg(n!)
Stirling approximation: n! =

√
2πn(n

e )
n(1+Θ(1

n))
so:
lg(n!) = lg(

√
2πn(n

e )
n(1+Θ(1

n)))

= lg
√

2π + lg
√

n+ lg
(
(n

e )
n
)
+ lg

(
1+Θ(1

n)
)

= Θ
(
lg
√

n+n lg(n
e )+ lg

(
1+Θ(1

n)
))

= Θ(n lgn)
so comparison-based sorting takes Ω(n lgn) time

School of Computing and Data Science - 16/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Lower Bounds

How many possible outputs are there for arranging n items?
Binary decision tree with n! leaves has height at least lg(n!)
Stirling approximation: n! =

√
2πn(n

e )
n(1+Θ(1

n))
so:
lg(n!) = lg(

√
2πn(n

e )
n(1+Θ(1

n)))

= lg
√

2π + lg
√

n+ lg
(
(n

e )
n
)
+ lg

(
1+Θ(1

n)
)

= Θ
(
lg
√

n+n lg(n
e )+ lg

(
1+Θ(1

n)
))

= Θ(n lgn)
so comparison-based sorting takes Ω(n lgn) time

School of Computing and Data Science - 16/16 - Frank Kreimendahl | kreimendahlf@wit.edu


	Heaps
	Problems
	Heaps
	Insertion
	Extract Min
	Implementation
	Pull Up
	Push Down
	Analysis
	Construction
	Creation Time
	Array Sizing
	Amortization

	Sorting
	Lower Bounds


