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Motivating Problems

1 Finding the min

2 Finding the min with insertions

3 Finding the min with insertions and deletions
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Solve using a binary tree data structure

Heap invariant property: parent is smaller than (or equal to) both
children

(This is specifically a min-heap. The max-heap invariant flips the
inequality.)
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Insertion

1 insert at bottom of tree

2 re-establish invariant by pulling value up
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Extract Min

1 remove root

2 move last node into root

3 re-establish invariant by pushing value down

heapsort
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Array Implementation of Tree

Rules for array index:

parent of i = ⌊ i−1
2 ⌋

left child of i = 2i+1

right child of i = 2i+2

automatically balanced!
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Pull Up – Insertion Helper

assume heap except at element i, A[i] might be too small

pullup(i)

1: if A[i]< A[parenti] then
2: swap A[i] with A[parenti]
3: pullup(parenti)

invariant: initialization, maintenance, terminination
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Push Down – Extraction Helper

assume heap except at element i, A[i] might be too large

pushdown(i)
1: mini← index of smallest among i and valid children of i
2: if mini ̸= i then
3: swap A[i] with A[mini]
4: pushdown(mini)

invariant: initialization, maintenance, terminination
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Analysis

Correctness

What is the space complexity?

What is the time complexity?
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Construction

Given an array, how do we construct a heap?

Can we do better than O(n lgn) time?

bottom up creation:
for i from length

2 −1 to 0 do
pushdown(i)

what is this time complexity?
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Heap Creation Time Complexity

height of a node is maximum distance to a leaf
countx is the number of nodes in a tree with height x

lgn

∑
h=0

(O(h)× counth)

There are n
2h+1 nodes with height h

lgn

∑
h=0

O(h)
n

2h+1 = O

(
n

lgn

∑
h=0

h
2h+1

)
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More Time Complexity

∞

∑
h=0

h
2h = 2, so

lgn

∑
h=0

h
2h < 2

O

(
n

lgn

∑
h=0

h
2h+1

)
= O

(
n

∞

∑
h=0

h
2h

)
= O(n)
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Sizing The Array

resize by doubling array size

‘amortized’ analysis: the ‘accounting method’

1 start with array half full, 0 accrued steps
2 each insertion takes 3 steps

a insert self now
b move self when array full
c move an existing element when array full

3 when array is full, we have 1 move step for each item

4 after move, array is half full, 0 accrued steps

School of Computing and Data Science - 13/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps
Problems

Heaps

Insertion

Extract Min

Implementation

Pull Up

Push Down

Analysis

Construction

Creation Time

Array Sizing

Amortization

Sorting

Amortization

‘amortized’ analysis: the ‘aggregate method’
Let ci = i if i−1 is a power of 2, 1 otherwise

n

∑
i=1

ci ≤ n+
lgn

∑
j=0

2j

< n+2n

< 3n

School of Computing and Data Science - 14/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Sorting

School of Computing and Data Science - 15/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Heaps

Sorting
Lower Bounds

Lower Bounds

How many possible outputs are there for arranging n items?
Binary decision tree with n! leaves has height at least lg(n!)
Stirling approximation: n! =

√
2πn(n

e )
n(1+Θ(1

n))
so:
lg(n!) = lg(

√
2πn(n

e )
n(1+Θ(1

n)))

= lg
√

2π + lg
√

n+ lg
(
(n

e )
n
)
+ lg

(
1+Θ(1

n)
)

= Θ
(
lg
√

n+n lg(n
e )+ lg

(
1+Θ(1

n)
))

= Θ(n lgn)
so comparison-based sorting takes Ω(n lgn) time
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