

[Quicksort](#page-0-0)

- [Partitioning](#page-1-0)
- [Recursion Tree](#page-3-0)
- **[Correctness](#page-7-0)**
- [Randmoized](#page-11-0)
- [Expected Runtime](#page-12-0)

[Searching](#page-13-0) **[Quicksort](#page-0-0)**

School of Computing and Data Science - 1/9 - Frank Kreimendahl | *kreimendahlf@wit.edu*

Partitioning

Ouicksort

- [Partitioning](#page-1-0)
- **Ouicksort**
- [Recursion Tree](#page-3-0) **[Correctness](#page-7-0)**
- [Randmoized](#page-11-0)
- [Expected Runtime](#page-12-0)
- [Searching](#page-13-0)

Divide array A into three sections: a section with values \leq pivot, the pivot, and a section with values $>$ pivot

PARTITION(*A*,*l*,*r*)

1: $p \leftarrow A[l]$ 2: $i \leftarrow l$ 3: **for** *j* from $l+1$ to r **do** 4: if $A[i] \leq p$ then $5 \cdot i \leftarrow i+1$ 6: swap $A[i]$ with $A[i]$ 7: swap $A[i]$ with $A[i]$ 8: return *i* // returns the location that the pivot ends up

Ouicksort

Ouicksort

[Partitioning](#page-1-0)

- **Ouicksort**
- [Recursion Tree](#page-3-0) **[Correctness](#page-7-0)** [Randmoized](#page-11-0)

[Expected Runtime](#page-12-0)

[Searching](#page-13-0)

strategy: partition full array, and then partition left and right resulting partitions

QUICKSORT(*A*,*l*,*r*)

- 1: if $l < r$ then
- 2: $i \leftarrow \text{PARTITION}(A, l, r)$
- 3: $\text{OUICKSORT}(A, l, i-1)$
- 4: OUICKSORT $(A, i+1, r)$

correctness? runtime complexity?

QUICKSORT Recursion Tree

Draw branches of recursive call Calculate running time of a single call

QUICKSORT Recursion Tree

Draw branches of recursive call Calculate running time of a single call Best case?

School of Computing and Data Science - 4/9 - Frank Kreimendahl | *kreimendahlf@wit.edu*

QUICKSORT Recursion Tree

Draw branches of recursive call Calculate running time of a single call Best case? Partition splits in half, $O(n \lg n)$ run time

School of Computing and Data Science - 4/9 - Frank Kreimendahl | *kreimendahlf@wit.edu*

Draw branches of recursive call Calculate running time of a single call Best case? Partition splits in half, $O(n \lg n)$ run time Worst case: $O(n^2)$ run time

QUICKSORT Recursion Tree

Ouicksort [Partitioning](#page-1-0) **Ouicksort** [Recursion Tree](#page-3-0) **[Correctness](#page-7-0)** [Randmoized](#page-11-0) [Expected Runtime](#page-12-0)

[Searching](#page-13-0)

Correctness

Property to prove: The partition algorithm partitions $A[1, r]$. Assumptions: $r > l$. Invariant property: At the beginning of the for-loop, values in the range $A[1+1..i] \leq p$ and values in the range $A[i+1..j-1] > p$.

School of Computing and Data Science - 5/9 - Frank Kreimendahl | *kreimendahlf@wit.edu*

Property to prove: The partition algorithm partitions $A[1, r]$.

Correctness

Assumptions: $r > l$. Invariant property: At the beginning of the for-loop, values in the range $A[1+1..i] \leq p$ and values in the range $A[i+1..j-1] > p$. **Initialization:** Both the $A[1+1..i]$ and $A[i+1..j-1]$ ranges are empty, so the two parts of the invariant property are trivially true.

Correctness

Property to prove: The partition algorithm partitions $A[1, r]$. Assumptions: $r > l$. Invariant property: At the beginning of the for-loop, values in the range $A[1+1..i] \leq p$ and values in the range $A[i+1..j-1] > p$. **Initialization:** Both the $A[1+1 \tcdot i]$ and $A[i+1 \tcdot i-1]$ ranges are empty, so the two parts of the invariant property are trivially true. Maintenance: Assume that the property is true up to an index of *k*: $A[1+1..i] \leq p$, $A[i+1..k] > p$. Show that it is true up to $k+1$ after running the for-loop one time. If $A[k+1] > p$, no values are swapped and *i* is unchanged. The $\geq p$ partition has

increased in size by 1 and the $\leq p$ partition has not changed, so the invariant property remains true. If $A[k+1] \leq p$, both *i* and *j* are incremented, which increases the $\leq p$ partition's size by 1. The current value is swapped into that partition, and a value \gg (the value at *i*) is swapped to the \gg partition. Therefore the invariant property stays correct in that case too.

Correctness

Property to prove: The partition algorithm partitions $A[1, r]$. Assumptions: $r > l$. Invariant property: At the beginning of the for-loop, values in the range $A[1+1..i] \leq p$ and values in the range $A[i+1..j-1] > p$. **Initialization:** Both the $A[1+1 \tcdot i]$ and $A[i+1 \tcdot i-1]$ ranges are empty, so the two parts of the invariant property are trivially true. Maintenance: Assume that the property is true up to an index of *k*: $A[1+1..i] \leq p$, $A[i+1..k] > p$. Show that it is true up to $k+1$ after running the for-loop one time.

If $A[k+1] > p$, no values are swapped and *i* is unchanged. The $\geq p$ partition has increased in size by 1 and the $\leq p$ partition has not changed, so the invariant property remains true. If $A[k+1] \leq p$, both *i* and *j* are incremented, which increases the $\leq p$ partition's size by 1. The current value is swapped into that partition, and a value \gg (the value at *i*) is swapped to the \gg partition. Therefore the invariant property stays correct in that case too. **Termination:** We looped through the full $A[1+1..r]$ range. Therefore $A[1+1..i] \leq p$ and $A[i+1..r] > p$. *p* is swapped with $A[i]$, which ends our algorithm with the condition that $A[1 \t i-1] \leq p$, $A[i]=p$, $A[i+1 \t i] > p$. The range is correctly partitioned.

[Expected Runtime](#page-12-0)

[Searching](#page-13-0)

Randomized Partition

Modify partitioning to choose a random pivot between *l* and *r* (inclusive):

PARTITION (A, l, r) 1: $z \leftarrow rand(l,r)$ 2: swap $A[l]$ with $A[z]$

$$
3\colon\thinspace p\leftarrow A[l]
$$

$$
4: i \leftarrow l
$$

5: **for**
$$
j
$$
 from $l+1$ to r **do**

6: if
$$
A[j] \leq p
$$
 then

7:
$$
i \leftarrow i + 1
$$

8:
$$
\operatorname{swap} A[i] \text{ with } A[j]
$$

9: swap $A[i]$ with $A[i]$

10: return *i*

Expected Runtime

Ouicksort [Partitioning](#page-1-0) **Ouicksort** [Recursion Tree](#page-3-0) [Randmoized](#page-11-0)

[Expected Runtime](#page-12-0)

[Searching](#page-13-0)

Unlikely to hit worst case with random pivot choices: 2/*n* chance to end up with empty partition for each choice of pivot

Expected runtime:

$$
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k(T(k) + T(n-1-k) + \Theta(n))\right]
$$

= $O(n \lg n)$

(More details are in textbook p. 175)

School of Computing and Data Science - 7/9 - Frank Kreimendahl | *kreimendahlf@wit.edu*

[Quicksort](#page-0-0)

[Searching](#page-13-0)

[Runtimes](#page-14-0)

[Searching](#page-13-0)

School of Computing and Data Science - 8/9 - Frank Kreimendahl | *kreimendahlf@wit.edu*

Delete assumes that we have already found the value we want to delete in the data structure.

Common Operation Runtimes