
Binary Search
Trees
BSTs

Next

Insert

Deletion Outline

Moving Subtrees

Deletion

Balanced Trees Binary Search Trees

School of Computing and Data Science - 1/10 - Frank Kreimendahl | kreimendahlf@wit.edu



Binary Search
Trees
BSTs

Next

Insert

Deletion Outline

Moving Subtrees

Deletion

Balanced Trees

Binary Search Trees

Binary search tree property: a binary tree which is ordered such
that every node’s left subtree has only smaller values and right
subtree has only larger (or equal) values

Useful operations: find, min, max, previous, next, insert, and
delete.

School of Computing and Data Science - 2/10 - Frank Kreimendahl | kreimendahlf@wit.edu



Binary Search
Trees
BSTs

Next

Insert

Deletion Outline

Moving Subtrees

Deletion

Balanced Trees

Next

If no right child, want minimum ancestor ‘to the right’

NEXT(x)

1: if right child exists then
2: return min under right child
3: else
4: return UP(x)

UP(x)
1: p← x.parent
2: if p = nil or x = p.left then
3: return p
4: else
5: return UP(p)

School of Computing and Data Science - 3/10 - Frank Kreimendahl | kreimendahlf@wit.edu



Binary Search
Trees
BSTs

Next

Insert

Deletion Outline

Moving Subtrees

Deletion

Balanced Trees

Insert

INSERT(n)

1: n.parent← FINDPARENT(n,root,nil)
2: if n.parent is nil then
3: root← n
4: else
5: if n < n.parent then
6: n.parent.left← n
7: else
8: n.parent.right← n

School of Computing and Data Science - 4/10 - Frank Kreimendahl | kreimendahlf@wit.edu



Binary Search
Trees
BSTs

Next

Insert

Deletion Outline

Moving Subtrees

Deletion

Balanced Trees

findParent

FINDPARENT(n, curr, parent)

1: if curr is nil then
2: return parent
3: if n < curr then
4: return FINDPARENT(n,curr.left,curr)
5: else
6: return FINDPARENT(n,curr.right,curr)

School of Computing and Data Science - 5/10 - Frank Kreimendahl | kreimendahlf@wit.edu



Binary Search
Trees
BSTs

Next

Insert

Deletion Outline

Moving Subtrees

Deletion

Balanced Trees

Deletion Outline

3 cases of delete(n):

1 no kids: pointer from parent← nil

2 1 child: substitute child for n at parent
3 2 children: let next(n) be s

a) s takes n’s place at parent
b) n’s left subtree becomes s’s
c) somehow rest of n’s right subtree becomes s’s

let’s split 3(c) into 2 cases. . .

School of Computing and Data Science - 6/10 - Frank Kreimendahl | kreimendahlf@wit.edu



Binary Search
Trees
BSTs

Next

Insert

Deletion Outline

Moving Subtrees

Deletion

Balanced Trees

Deletion Outline, Revised

4 cases of delete(n):

1 no kids: pointer from parent← nil

2 1 child: substitute child for n at parent
3 s is n’s right child:

a) substitute s for n
b) add n’s left subtree as s’s left subtree

4 s is deeper:
a) substitute s’s right subtree for s
b) add n’s right subtree as s’s right subtree
c) substitute s for n
d) add n’s left subtree as s’s left subtree

School of Computing and Data Science - 7/10 - Frank Kreimendahl | kreimendahlf@wit.edu



Binary Search
Trees
BSTs

Next

Insert

Deletion Outline

Moving Subtrees

Deletion

Balanced Trees

Moving Subtrees

SUBSTITUTE(old,new)

1: if old’s parent is nil then
2: root← new
3: else
4: if old is parent’s left child then
5: parent’s left child← new
6: else
7: parent’s right child← new
8: if new ̸= nil then
9: new’s parent← old’s parent

School of Computing and Data Science - 8/10 - Frank Kreimendahl | kreimendahlf@wit.edu



Binary Search
Trees
BSTs

Next

Insert

Deletion Outline

Moving Subtrees

Deletion

Balanced Trees

Deletion

DELETE(n)

1: if n has no left child then
2: SUBSTITUTE(n, n’s right subtree)
3: else if n has no right child then
4: SUBSTITUTE(n, n’s left subtree)
5: else
6: s← min in n’s right subtree
7: if n ̸= s.parent then
8: SUBSTITUTE(s, s’s right subtree)
9: s’s right subtree← n’s right subtree

10: s’s right child’s parent← s
11: SUBSTITUTE(n,s)
12: s’s left subtree← n’s left subtree
13: s’s left child’s parent← s

School of Computing and Data Science - 9/10 - Frank Kreimendahl | kreimendahlf@wit.edu



Binary Search
Trees
BSTs

Next

Insert

Deletion Outline

Moving Subtrees

Deletion

Balanced Trees

Balanced Trees

Structure Find Insert Delete
List (sorted)
BST (unbalanced)
BST (balanced)

Reminder: maintaining a balanced binary tree is important

School of Computing and Data Science - 10/10 - Frank Kreimendahl | kreimendahlf@wit.edu


	Binary Search Trees
	BSTs
	Next
	Insert
	Deletion Outline
	Moving Subtrees
	Deletion
	Balanced Trees


