
Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

Red-Black Trees

School of Computing and Data Science - 1/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

Red-Black Trees

each node: data, left, right, parent, color

Properties:

every node is either red or black

the root is black

nil is black

both children of a red node are black

from any node, all the paths to leaf nils have the same
number of black nodes

changes to find and next/prev?

School of Computing and Data Science - 2/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

Rotation

useful subroutines:

ROTATE-RIGHT

ROTATE-LEFT

School of Computing and Data Science - 3/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

Insert

INSERT(n)

1: n.parent← FINDPARENT(n,root,nil)
2: if n.parent is nil then
3: root← n
4: else
5: if n < n.parent then
6: n.parent.left← n
7: else
8: n.parent.right← n
9: n’s children← nil

10: color n red
11: FIX-INSERT(n)

School of Computing and Data Science - 4/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

Fixing Insertion

Properties:

every node is either red or black

the root is black

nil is black

both children of a red node are black

from any node, all the paths to leaf nils have the same
number of black nodes

Cases:

1 root is red (property 2)

2 two red in a row (property 4)

School of Computing and Data Science - 5/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

Fixing Insertion

Properties:

every node is either red or black

the root is black
nil is black

both children of a red node are black
from any node, all the paths to leaf nils have the same
number of black nodes

Cases:

1 root is red (property 2)

2 two red in a row (property 4)

School of Computing and Data Science - 5/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

FIX-INSERT(z)

1: while z’s parent is red do
2: if z’s parent is a left child then
3: y← z’s grandparent’s right child
4: if y is red then
5: color z’s parent black
6: color y black
7: color z’s grandparent red
8: z← z’s grandparent
9: else

10: if z is a right child then
11: z← z’s parent
12: rotate-left(z)
13: color z’s parent black
14: color z’s grandparent red
15: rotate-right(z’s grandparent)
16: else 3 symmetric cases (switch left↔right)
17: color root black

School of Computing and Data Science - 6/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

Fixing Invariant

Cases:

1 root is red (property 2)

2 two red in a row (property 4)

During fixup:

1 z is red

2 if z’s parent is the root, it is black
3 at most, one property is violated at z

a) if property 2: z is root and red
b) if property 4: z and parent are both red

Invariant initialization:

1 we colored z red

2 we didn’t touch z’s parent, and root is black

3 just shown

School of Computing and Data Science - 7/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

Fixing Invariant

Cases:

1 root is red (property 2)

2 two red in a row (property 4)

During fixup:

1 z is red

2 if z’s parent is the root, it is black
3 at most, one property is violated at z

a) if property 2: z is root and red
b) if property 4: z and parent are both red

Invariant initialization:

1 we colored z red

2 we didn’t touch z’s parent, and root is black

3 just shown

School of Computing and Data Science - 7/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

Invariant Termination

Assuming other properties are maintained, do we have a
red-black tree now?

Examine invariant:

1 irrelevant

2 irrelevant
3 only 2 xor 4 can be violated in loop

a) if 2: root colored black at line 17
b) if 4: z’s parent is black (by 5 and 13), so 4 is not violated

What about maintaining the other red-black properties?

School of Computing and Data Science - 8/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

Invariant Maintenance

central problem: z and parent are red
3 cases (+3 more by symmetry of z’s parent being left/right):

1 z’s uncle y is also red

2 z’s uncle y is black and z is a right child

3 z’s uncle y is black and z is a left child

Proof plan:

1 fix case 1, possibly introduce case 2

2 reduce case 2 to case 3

3 fix case 3

School of Computing and Data Science - 9/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees
Red-Black Trees

Rotation

Insert

Fixing Insertion

fix-insert(z)

Fixing Invariant

Termination

Maintenance

Radix Trees

Invariant Maintenance

central problem: z and parent are red
3 cases (+3 more by symmetry of z’s parent being left/right):

1 z’s uncle y is also red

2 z’s uncle y is black and z is a right child

3 z’s uncle y is black and z is a left child

Proof plan:

1 fix case 1, possibly introduce case 2

2 reduce case 2 to case 3

3 fix case 3

School of Computing and Data Science - 9/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees

Radix Trees
Searching

Tries

Radix Trees

School of Computing and Data Science - 10/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees

Radix Trees
Searching

Tries

Searching

What if we are searching for long keys?

Can we detect a miss without examining the entire key?

School of Computing and Data Science - 11/12 - Frank Kreimendahl | kreimendahlf@wit.edu



Red-Black
Trees

Radix Trees
Searching

Tries

Tries

trie: test each digit of key, branch on digit value

some nodes do not hold values

trie depth = key length

canonical representation

retrieval

CLRS: ‘trie’ = ‘radix tree’
Wikipedia: ‘trie’ ̸= ‘radix tree’, ‘radix tree’ = ‘radix trie’ =
‘patricia trie’

duplicate keys?
what is their weakness?

School of Computing and Data Science - 12/12 - Frank Kreimendahl | kreimendahlf@wit.edu


	Red-Black Trees
	Red-Black Trees
	Rotation
	Insert
	Fixing Insertion
	fix-insert(z)
	Fixing Invariant
	Termination
	Maintenance

	Radix Trees
	Searching
	Tries


