
Sequence
Alignment
LCS

Recursive Approach

Substructure

Induction

Summary

Sequence Alignment

School of Computing and Data Science - 1/6 - Frank Kreimendahl | kreimendahlf@wit.edu



Sequence
Alignment
LCS

Recursive Approach

Substructure

Induction

Summary

Longest Common Subsequence

Given two strings, x of length m and y of length n, find a common
non-contiguous subsequence that is as long as possible.

What is the complexity of the naive algorithm?
How can we make this efficient?

School of Computing and Data Science - 2/6 - Frank Kreimendahl | kreimendahlf@wit.edu



Sequence
Alignment
LCS

Recursive Approach

Substructure

Induction

Summary

Longest Common Subsequence

Given two strings, x of length m and y of length n, find a common
non-contiguous subsequence that is as long as possible.

What is the complexity of the naive algorithm?
How can we make this efficient?

School of Computing and Data Science - 2/6 - Frank Kreimendahl | kreimendahlf@wit.edu



Sequence
Alignment
LCS

Recursive Approach

Substructure

Induction

Summary

Longest Common Subsequence

Given two strings, x of length m and y of length n, find a common
non-contiguous subsequence that is as long as possible.

What is the complexity of the naive algorithm?
How can we make this efficient?

School of Computing and Data Science - 2/6 - Frank Kreimendahl | kreimendahlf@wit.edu



Sequence
Alignment
LCS

Recursive Approach

Substructure

Induction

Summary

Recursive Approach

LCS(i, j) means length of LCS only considering up to xi and yj

LCS(i, j) =


0, if i = 0 or j = 0
LCS(i−1, j−1)+1, if xi = yj

max(LCS(i−1, j),LCS(i, j−1)) otherwise

School of Computing and Data Science - 3/6 - Frank Kreimendahl | kreimendahlf@wit.edu



Sequence
Alignment
LCS

Recursive Approach

Substructure

Induction

Summary

Optimal Substructure

Prove global optimum uses optimal solutions of subproblems:

Let z be an LCS(i, j) of length k
What if subproblem of optimal solution were not optimal?
Three cases:

1 If xi = yj, then zk = xi = yj and LCS(i−1, j−1) = z0..zk−1.
Not including zk makes LCS suboptimal: contradiction!
If z0..zk−1 were not LCS, z could be longer, so not optimal:
contradiction!

2 If xi ̸= yj and zk ̸= xi then z is LCS(i−1, j)
If longer exists, z would not be LCS: contradiction!

3 If xi ̸= yj and zk ̸= yj then z is LCS(i, j−1)
Similar case to 2

School of Computing and Data Science - 4/6 - Frank Kreimendahl | kreimendahlf@wit.edu



Sequence
Alignment
LCS

Recursive Approach

Substructure

Induction

Summary

Optimal Substructure

Prove global optimum uses optimal solutions of subproblems:

Let z be an LCS(i, j) of length k
What if subproblem of optimal solution were not optimal?
Three cases:

1 If xi = yj, then zk = xi = yj and LCS(i−1, j−1) = z0..zk−1.
Not including zk makes LCS suboptimal: contradiction!
If z0..zk−1 were not LCS, z could be longer, so not optimal:
contradiction!

2 If xi ̸= yj and zk ̸= xi then z is LCS(i−1, j)
If longer exists, z would not be LCS: contradiction!

3 If xi ̸= yj and zk ̸= yj then z is LCS(i, j−1)
Similar case to 2

School of Computing and Data Science - 4/6 - Frank Kreimendahl | kreimendahlf@wit.edu



Sequence
Alignment
LCS

Recursive Approach

Substructure

Induction

Summary

Optimal Substructure

Prove global optimum uses optimal solutions of subproblems:

Let z be an LCS(i, j) of length k
What if subproblem of optimal solution were not optimal?
Three cases:

1 If xi = yj, then zk = xi = yj and LCS(i−1, j−1) = z0..zk−1.
Not including zk makes LCS suboptimal: contradiction!
If z0..zk−1 were not LCS, z could be longer, so not optimal:
contradiction!

2 If xi ̸= yj and zk ̸= xi then z is LCS(i−1, j)
If longer exists, z would not be LCS: contradiction!

3 If xi ̸= yj and zk ̸= yj then z is LCS(i, j−1)
Similar case to 2

School of Computing and Data Science - 4/6 - Frank Kreimendahl | kreimendahlf@wit.edu



Sequence
Alignment
LCS

Recursive Approach

Substructure

Induction

Summary

Proof by Induction

Proof structure:

Prove base case is true (i, j = 1)

Assume true for i−1 and j−1, prove true for i and j

If i, j = 1, then xi−1 and yj−1 are empty strings, so trivially true

We showed the second part of the proof already

Therefore, for any i, j, the subproblem of an optimal solution is
optimal

School of Computing and Data Science - 5/6 - Frank Kreimendahl | kreimendahlf@wit.edu



Sequence
Alignment
LCS

Recursive Approach

Substructure

Induction

Summary

Summary of Dynamic Programming

1 optimal substructure: global optimum uses optimal solutions
of subproblems

2 ordering of subproblems: solve ‘smallest’ first, build larger
solutions from smaller

3 ‘overlapping’ subproblems: polynomial number of
subproblems, used multiple times

4 independent subproblems: optimal solution of one
subproblem doesn’t affect optimality of another

top-down: memoization

bottom-up: compute table, then recover solution

School of Computing and Data Science - 6/6 - Frank Kreimendahl | kreimendahlf@wit.edu


	Sequence Alignment
	LCS
	Recursive Approach
	Substructure
	Induction
	Summary


