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Longest Common Subsequence

Given two strings, x of length m and y of length n, find a common
non-contiguous subsequence that is as long as possible.

What is the complexity of the naive algorithm?
How can we make this efficient?
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Recursive Approach

LCS(i, j) means length of LCS only considering up to xi and yj

LCS(i, j) =


0, if i = 0 or j = 0
LCS(i−1, j−1)+1, if xi = yj

max(LCS(i−1, j),LCS(i, j−1)) otherwise
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Optimal Substructure

Prove global optimum uses optimal solutions of subproblems:

Let z be an LCS(i, j) of length k
What if subproblem of optimal solution were not optimal?
Three cases:

1 If xi = yj, then zk = xi = yj and LCS(i−1, j−1) = z0..zk−1.
Not including zk makes LCS suboptimal: contradiction!
If z0..zk−1 were not LCS, z could be longer, so not optimal:
contradiction!

2 If xi ̸= yj and zk ̸= xi then z is LCS(i−1, j)
If longer exists, z would not be LCS: contradiction!

3 If xi ̸= yj and zk ̸= yj then z is LCS(i, j−1)
Similar case to 2
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Proof by Induction

Proof structure:

Prove base case is true (i, j = 1)

Assume true for i−1 and j−1, prove true for i and j

If i, j = 1, then xi−1 and yj−1 are empty strings, so trivially true

We showed the second part of the proof already

Therefore, for any i, j, the subproblem of an optimal solution is
optimal
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Summary of Dynamic Programming

1 optimal substructure: global optimum uses optimal solutions
of subproblems

2 ordering of subproblems: solve ‘smallest’ first, build larger
solutions from smaller

3 ‘overlapping’ subproblems: polynomial number of
subproblems, used multiple times

4 independent subproblems: optimal solution of one
subproblem doesn’t affect optimality of another

top-down: memoization

bottom-up: compute table, then recover solution
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